
Lecture 2 : Lovász Local Lemma

Lecturer: Ronitt Rubinfeld, Scribe: Alessandre Santos

2.2.2022

1 Introduction

Last lecture, we learned that despite providing a proof for existence the probabilistic method does
not provide a way to find the satisfying construction. However, in this lecture, we introduce the
Lovász Local Lemma(LLL) and related algorithms that finds the diseried construction in this setting.

2 Lovász Local Lemma (LLL)

Question 1 Given some “bad events” A1,, An that happen each with Pr[Ai] ≤ p for some constant
p for all i. Can we show that there is a non-zero probability that none of the events happen such
that Pr(∩iAi) > 0?

Our first approach to the question could be to think of what different kinds of relationships could
exists among these “ bad events”.

2.1 Case 1: all independent

If A′
is are independent and non trivial Pr(Ai) ̸= 1 then we have the following relationship:

Pr[∪iAi] = 1− Pr(∩iAi) = 1−ΠiPr>0[Ai] < 1 (1)

where the first inequality comes from properties of the complement, the second inequality is just
the definition of independence and the last inequality comes from the assumption that Ai’s are non
trivial.

2.2 Case 2: all dependent but bounded

Next, we could consider events that are all dependent among each other, but with the condition
that

∑
i Pr[Ai] < 1. Then, we have the following relationship:

Last time union bound.

Pr[∪iAi] ≤
∑
i

Pr[Ai] < 1 (2)

In this case, the first inequality comes from union bound and the second inequality comes from
the assumption on the probabilities.

2

2.3 Case 3

However, we can wonder if there is some intermediate case where the events are independent of some
but not all events and we can bound their probabilities by some condition. Before attempting this
however, it is necessary to define a condition of dependence.

Definition 2 A is independent of a set of variables B1, ..., Bk if for all subsets J with J ⊆ [k] =
{1, ..., k} and J ̸= ∅, we have the following relationship:

Pr[A ∩
⋂
i∈J

Bj] = Pr[A] · Pr[∩i∈JBj]

Definition 3 Let A1, ..., An be events and construct the following dependency digraph D = (V,E)
such that V = [n] and Ai independent of all Aj that are not neighbours in D.

The definition of dependency digraph accounts for direction. Furthermore, this means that if
there is an edge from Ai to Aj , Ai is dependent of Aj and the opposite is not necessarily true.
However, the direction of the dependence will not be used in this lecture. Now we can state the full
statement for the Lovász Local Lemma.

Theorem 4 Let Ai, ...An events such that Pr(Ai) ≤ p with dependency graph D such that D has
maximum degree d.

Thus, if

eṗ(̇d+ 1) ≤ 1 (3)

then we have that

Pr(∩ni=1Ai) > 0. (4)

3

3 Examples & Set Coloring

We can start with a simple example presented below. Now we can apply LLL to the 2−coloring
problem to get get a condition independent of the number of sets

Theorem 5 Let S1, ..., Sm ⊆ X such that |Si| = l and each of Si intersects ≤ d other Si’s. If
e(d+ 1) ≤ 2l−1, then we can 2-color X such that no Si is monochromatic.

Proof
In the same way as last time, we color each element of X red or blue with probability p = 1

2 . We
define the event Ai as Ai = {Si is monochromatic}. Since every element is colored independently,
we get the following relationship:

Pr[Ai] =
1

2l−1
(5)

Ai independent of all Aj such that Si ∩ Sj = ∅, thus Si depends on at most d other Ai’s (here
we use our degree bounds).

Note that if the intersection of two sets is monochromatic then, these probabilities increase. But
if two sets do not intersect then they are independent.

Thus, we have that ep(d+ 1) = e 1
2l−1 (d+ 1) ≤ 1. Thus, by LLL we have that:

Pr[∩iAi] > 0

Observation 6 Notice that this theorem today has a less strong assumption on the sets. Instead of
it being less than 2l−1, we have not restriction on size but only on “number of dependencies”

These sets Si can thought of as the hyper-edges of a hyper-graph. For example in the Figure
1, We have the pink and blue sets; they both can be thought of as size three hyperedges.

Figure 1: Hypergraph with hyperedges of size three.

One of the reasons that the LLL theorem developed to solve the problem of satisfiability.Take

a CNF formula with l variables in each clause, and less than k clauses. If e(lk+1)
2l−1 ≤ 1, then there

is a satisfying assignment. This is relevant for the NP -hard k − SAT problem (with k > 2) that
determines whether a clause has a satisfying assignment. Moreover, for some inputs we can directly
solve the problem just by checking clause satisfies the conditions mentioned before.

4 Algorithm and Proof

If you remember the probabilistic method, one of the main problems was that despite being able to
prove the existence of a construction it did not give us a procedure to find this said construction.
Thus, it was quite important when LLL was developed together with an algorithms that could find
the construction.

4

4.1 History

The first person to make an algorithmic version of the LLL was Beck in 1991. However, this random
algorithm made a really big assumption of d ≤ 2l/1000. Not long after, Alon made a better result
with the assumption that d ≤ 2l/8. Finally, in 2009, Moser (later improved further by Moser and

Tardos) were able to give a polynomial time algorithm under the assumption that d ≤ 2l

c .
The algorithm developed by Moser and Tardos is the more simple one and is presented below.

However, this is not the algorithm that we will prove works. It is also important to note that all the
algorithms discussed hereon are solving the set 2-coloring problem.

2-color X randomly ;
while some Si is monochromatic do

pick monochromatic Si ;
randomly assign colors of Si ;

end

Algorithm 1: Moser-Tardos

If you look in the textbook then you can find three different versions of the algorithm for finding
a 2-coloring.

4.2 Beck’s Algorithms and Proof of Correctness & Running Time

4.2.1 Assumptions

Let S1, ..., Sm ⊆ X all with same size l and such that for each Si there at most d other Sj such that
Sj ∩ Si ̸= ∅. Assume that l and d are constant.

Definition 7 A set Si with some coloring will be bad if at least ≤ αl̇ points are all red or all blue
where where α << 1

2 is some chosen constant

We will consider the connected components of bad sets. Where two sets Si and Sj are connected
if Si ∩ Sj ̸= ∅. Notice that these connected components can have any number of sets even O(n).

(1st pass)2-color X randomly ;
B ← {Si |Si is bad} ;
if all connected components of B are at most ≤ d2 ˙logm then

(2nd pass) brute force fix each of connected components of B without making
neighbours monochromatic

else
retry

end

Algorithm 2: Beck’s Algorithm

Observation 8 Note that sets that are bad are far from monochromatic. In the brute force second
pass of the algorithm, we just want every set not be monochromatic.

If the above algorithm is true, then we can use a pass of a simple randomized algorithms to do
most of the work for us, and then we can do a second quick pass to fix it. This idea is very useful
in randomized algorithms. An analogy in snow removal is when the snow is scattered around into
lots of small patches, it melts rapidly. However, when it is heaped into a big pile, it can take a long
time to melt.

5

4.2.2 Proof of Correctness and Run time

We have three main questions to give a full proof.

Question 9 How do we know we reach a good solution ?

To answer this questions we will just show that a good coloring for each of the sets considering three
cases:

• Case 1: Si is bad. If Si is a bad set that is close to monochromatic, then, we will recolor
everything.

• Case 2: Si is not bad and has less than αl nodes in bad neighbours , then Si will still be bi
chromatic after the 2nd pass (recoloring of bad components).

• Case 3: If Si is not bad and it has more than αl nodes in bad neighbours , then ≥ αl nodes get
recolored. For this case, we just need to apply LLL again to this part of the graph together
with all bad sets from case 1.

– If recolor randomly the sets in case 1 and 3, then Pr[Si is monochromatic] ≤ 2−αl.
Thus, using LLL and the assumption that 2e(d+ 1) ≤ 2αl. Then the solution exists.

Question 10 How are you going to brute force, this is usually not good?

Brute Force is actually not that bad in this case.

• Size of the surviving component is O(d2 logm). The number of settings to variables in each

2lȮ(d2 logm) = mO(ld2)

Here is where the assumption that l and d are constants give us a polynomial time. To work
with the case where they are not constants we just apply recursion. Multiple iterations with
embedded logarithms that become near constants

Question 11 How many times are we going to have to retry?

This is the toughest part of the proof. First, we will give an expression for the probability of a
set Si being bad with the lemma below.

Lemma 12 For each set Si, we have that:

Pr[Si is bad] = 2 · 2(H(α)−1)l̇ = p (6)

where H(x) = −x log2 x− (1− x) log2 1− x.

Note that p as the probability of Si being bad. With the previous property of the probability,
we can get the following lemma.

Lemma 13 Let C be some independent set with S1, ..., S|C|, then the probability that they are all
bad can be given by:

Pr[C ⊆ B] ≤ p|C| (7)

where B is the set of all bad sets as defined above and p is the probability

We will do an initial approach to proving that big bad components do not happen often.

6

• Attempt 1 : Let C be a big component C = {S1,, S|C|} from the dependency graph D
defined above that is also contained in the set B of bad components. We want to show that
the probability that C has a non bad set is high.

To do this, we involve independent sts. Then let C ′ be an independent component in c. Then,
if S′ ⊆ S ⊆ B. This gives us the following

Pr[S ⊆ B] ≤ Pr[S′ ⊆ B] ≤ p|S
′| (8)

Notice that in this case |S′| is the size of the set and the first inequality comes from S′ ⊆ S
and the second one from the lemma above.

Thus, we can use union bound for the following probability. Let C1,Ck be all the k big
components (components that are not logarithmic in size).

Pr[∩i{Ci ⊆ B}] ≤
∑
i

Pr[Ci ⊆ B] ≤ k · pmini |C′
i| (9)

Note that here mini |C ′
i| refers to the size of the smallest independent set in each of the set

Ci’s

In this first attempt, k could be a really large number like
(

n
mini|Ci|

)
. Moreover, the smallest

independent set could be size 1. Thus, k · pmini |C′
i| could be a number bigger than 1 which is

not useful.

However, the bounded degree of the graph can provide more information on bounding k and
mini |C ′

i| to improve this result.

• Attempt 2: First, we will show a bound lower bound for |C ′|

Lemma 14 Given a subgraph of H of size S in graph of degree ≤ ∆, Then, there must be an

independent set in H of size ≤ |H|
∆+1

Proof We will have a greedy algorithm. In each iteration, take an arbitrary node u in H
and add it to the independent set. Then remove all neighbours of u from H. This removes at
most ∆+1 nodes from H in each iteration. Repeat until H is empty Since we require at least

|H|/(∆ + 1) iterations until H is empty, and each iteration adds a node to the independent
set, the independent set is of size at least |H|/(∆ + 1)

To be continued...

7

	Introduction
	Lovász Local Lemma (LLL)
	Examples & Set Coloring
	Algorithm and Proof

